Computing at CERN in the LHC era

Sverre Jarp CERN openlab, IT Dept

"where the Web was born"

Agenda

- 09:00 Visit to Computing Centre (AH)
 09:30 Xyratex overview. Motivation for today's meeting
 09:50 Overview of CERN computing (SJ)
 10:10 CERN's central disk operations (HM, TB)
 10:50 Coffee break (10 mins)
 11:00 Disk corruption issues (PK)
 11:30 Xyratex technical overview
 12:30 13:15: Visit to ATLAS
- 13:15 14:00 Quick lunch
- 14:00 16:00 Afternoon meeting (part 1, in 28 S-029)
- 14:00 14:20 openlab participation model (SJ/FF)
- 14:20 16:00 Brainstorming (ALL)
- 16:00 16:20 coffee break
- 16:20: 17:30 Summary of the day, Further plans (ALL)

Briefly about CERN

- CERN is the world's largest particle physics centre
- Particle physics is about:
 - elementary particles, the constituents from which all matter in the Universe is made
 - fundamental forces which hold matter together
- Particles physics requires:
 - special tools to create and study new particles

The special tools for particle physics are:

- ACCELERATORS, huge machines (inside a complex underground structure) - able to accelerate particles to very high energies before colliding them into other particles
- **DETECTORS**, massive instruments which register the particles produced when the accelerated particles collide
- **COMPUTING**, to reconstruct the collisions, to extract the physics data and to perform the analysis

CERN in Numbers

- 2500 Staff
- 6500 Users
- 500 Fellows and Associates
- 80 Nationalities
- 500 Universities
- Budget ~1200 MCHF/year (~730 M€/year)

20 Member States: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom.

8 Observers:

India, Israel, Japan, the Russian Federation, USA, Turkey, the European Commission and UNESCO

What is LHC?

LHC will be switched on in 2007

Four experiments, with detectors as 'big as cathedrals': ALICE ATLAS CMS LHCb

- tor will be the

- It is a particle accelerator that will collide beams of protons at an energy of 14 TeV
- Using the latest super-conducting technologies, it will operate at about – 271°C, just above the absolute zero of temperature
- With its 27 km circumference, the accelerator will be the largest superconducting installation in the world.
- Its two proton beams will interact 40 million times per second (3000 bunches of 100 billion protons each)

ATLAS construction

PHYSICS COMPUTING

High Energy Physics Computing Characteristics

- Independent events (collisions of particles)
 - trivial (read: pleasant) parallel processing
- Bulk of the data is read-only
 - versions rather than updates
- Meta-data in databases, but physics data in "flat" files
- Compute power measured in **SPECint** (rather than SPECfp)
 - But good floating-point is important
- Very large aggregate requirements:
 - computation, data, input/output
- Chaotic workload
 - research environment physics extracted by iterative analysis, collaborating groups of physicists
 - \rightarrow Unpredictable \rightarrow unlimited demand

The Computing Environment

 High-throughput computing (based on reliable "commodity" technology)

CERN openia

- Around 3000 (dualsocket Xeon) PCs with "Scientific Linux"
 - Now typically also "dual-core"

 First quad-core systems just installed!

The Bulk Resources – Event Data

LCG (LHC Computing Grid)

Why do we need a Grid?

- The LHC Computing requirements are simply too huge:
 - Political resistance to putting everything at CERN
 - Impractical to build such a huge facility in one place
 - The users are in any case not necessarily at CERN
 - Modern wide-area networks have made distances shrink
 - But, latency still has to be kept in mind
- So, spread the burden!

Biggest Grid project in the world
Almost 200 sites in 39 countries
37'000 IA-32 processors (w/Linux)
Tens of petabytes of storage

www.cern.ch/openlab

CONTRIBUTORS

PARTNERS

invent

ORACLE

CERN openlab

- CERN-IT department's main R&D focus
- Framework for collaboration with industry
- Evaluation, integration, validation
 - of cutting-edge technologies that can serve the LHC Computing Grid (LCG)
- Sequence of 3-year agreements
 - 2003 2005: the "opencluster" project
 - 2006 2008: openIab Phase II with new projects:
 - Platform, Grid, Databases, Network/Security

Conclusions

- CERN is busily preparing for the arrival of LHC data next year!
 - New and exciting technologies will be used to cope with the data
 - 10 Gb networking
 - Terabyte disk and tape technology
 - 64-bit processors with multicore and virtualization capabilities
 - Our Grid offers seamless integration, all around the globe
 - Together with our partners (EU, industrial partners, other Physics Labs, other sciences) we expect to continue to come up with interesting proofs-of-concept and technological spin-off !
- High Throughput Computing is "on the move" !

